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A quantitative study is presented of the typical behavior of the simulated 
annealing algorithm based on a cooling schedule presented previously by the 
authors. The study is based on the analysis of numerical results obtained by 
systematically applying the algorithm to a 100-city traveling salesman problem. 
The expectation and the variance of the cost are analyzed as a function of the 
control parameter of the cooling schedule. A semiempirical average-case perfor- 
mance analysis is presented from which estimates are obtained on the expec- 
tation of the average final result obtained by the simulated annealing algorithm 
as a function of the distance parameter, which determines the decrement of the 
control parameter. 

KEY WORDS:  Combinatorial optimization; simulated annealing; traveling 
salesman problem; performance analysis. 

1. I N T R O D U C T I O N  

Ever since Kirkpatrick e ta l .  (8) and t~erny (4) introduced the concepts of 
annealing into the field of combinatorial optimization, much effort has 
been devoted to investigating the theory of the simulated annealing 
algorithm 2 and many applications to a wide variety of problems in various 
disciplines have been presented. For an extensive treatment of the theory 
and the applications the reader is referred to Ref. 10. The annealing 
algorithm is based on Monte Carlo techniques applying the Metropolis 
algorithm from statistical physics (13) and can be modeled mathematically 

i Philips Research Laboratories, 5600 JA Eindhoven, the Netherlands. 
2 Other names used to denote the method are statistical cooling (1) and probabilistic hill 

climbing.115) 
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by using concepts of the theory of Markov chains. It was proved by a num- 
ber of authors that under certain conditions the algorithm converges 
asymptotically to an optimal solution (see also Section2). Thus, 
asymptotically the algorithm is an optimization algorithm. In practical 
applications, however, asymptoticity is never attained and thus con- 
vergence to an optimal solution is no longer guaranteed. Consequently, in 
practice the algorithm is an approximation algorithm. 

The quality of the final solution obtained by the algorithm is deter- 
mined by the convergence of the algorithm, which is governed by a set of 
parameters, called the cooling schedule. In the literature the behavior of the 
simulated annealing algorithm as an approximation algorithm is usually 
analyzed in an empirical way. This involves the analysis of computation 
times and quality of final solutions obtained by running the algorithm on a 
(large) set of problem instances, e.g., by comparing the results with those 
found by other approximation and optimization algorithms. 

However, also for a f i x e d  problem instance, it is interesting to analyze 
the aforementioned parameters because, even for a fixed instance, the com- 
putation time and the quality of the final solution are random variables, 
due to the probabilistic nature of the algorithm. It is for this reason that in 
this paper we take one (representative) instance of the well-known travel- 
ing salesman problem as a starting point so as to present a (semiempirical) 
average-case analysis of the algorithm by running it a (large) number of 
times on the same instance. We show that it is possible to reproduce the 
observed behavior by using standard techniques from statistical physics 
and some assumptions on the configuration density. We emphasize that it 
is not our intention to contrast the performance of the algorithm with that 
of other algorithms nor other implementations of the simulated annealing 
algorithm (i.e., the simulated annealing algorithm with another cooling 
schedule). 

Grest et al. (s) report on an experimental study of spin-glass problems 
from which they conclude that the ground-state energy obtained by the 
simulated annealing algorithm depends logarithmically on the cooling rate. 
To our knowledge, however, a more systematic investigation of the typical 
behavior and the average-case performance of the simulated anneali'ng 
algorithm has not been presented in the literature. This paper serves as a 
first approach to such an investigation. 

2. M A T H E M A T I C A L  M O D E L  OF THE 
S I M U L A T E D  A N N E A L I N G  A L G O R I T H M  

A combinatorial optimization problem can be characterized by the 
configuration space ~ ,  denoting the set of all possible configurations i, 
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and a cost function C: N ~ R, which assigns a real number C(i) to each 
configuration i. We assume that C is defined such that the lower the value 
of C, the better the corresponding configuration (with respect to the 
optimization criteria). This can be done without loss of generality. The 
objective is to find an optimal configuration io for which 

C(io) = Cmin = min{ C(i) l ie  ~ } (1) 

where C~in denotes the minimum cost. To apply the simulated annealing 
algorithm, a mechanism is used to generate a new configuration (a 
neighbor) from a given one by a small perturbation. A neighborhood ~i is 
defined as the set of configurations that can be reached from configuration 
i by a single perturbation. The simulated annealing algorithm starts off 
with a given initial configuration and continuously tries to transform a 
current configuration into one of its neighbors by applying a perturbation 
mechanism and an acceptance criterion. The acceptance criterion allows for 
deteriorations in the cost function, thus enabling the algorithm to escape 
from local minima. 

2.1. Asymptotic Convergence 

The simulated annealing algorithm can be formulated as a sequence of 
Markov chains, each Markov chain being a sequence of trials, where the 
outcome of a given trial only depends on the outcome of the previous trial 
(the outcomes of the trials are the configurations). The probability that a 
trial transforms configuration i into configuration j is defined as ~'1~ 

t 
Ab(c) Go.(c ) if i C j  

Po(C) = 1 - ~ Aik(c) Gik(c) if i = j  (2) 
k ~ , ~ , k  ~ i 

where Pu(c) denotes the transition probability, Go.(c ) the perturbation 
probability, i.e., the probability of generating configuration j from 
configuration i, Ao.(c ) the acceptance probability, i.e., the probability of 
accepting configuration j given the configurations i and j, and c denotes a 
value of the control parameter (ceR+),  which plays the role of the 
temperature in the physical annealing process. 

It can be proved under a number of conditions on the probabilities 
Gij(c) and A~(c) that asymptotically (i.e., for infinitely long Markov chains 
and c~0) the algorithm finds an optimal configuration with probability 
equal to 1. ~1'1~ The proof is based on the existence of an equilibrium dis- 
tribution. Let X(k) denote the outcome of the kth trial of a Markov chain; 
then under the condition that the Markov chains are irreducible, aperiodic, 
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and recurrent, there exists a unique equilibrium distribution given by the 
I~l-vector q(c). The components qi(c) denote the probability that a con- 
figuration i will be found after an infinite number of trials and are given by 
the following expression: 

q,(c) = lira Pr{X(k)= i[ c} (3) 
k ~ o o  

= lim ( [Pk(c) ] ra ) ,  (4) 
k ---* oo 

where a denotes the initial probability distribution of the configurations 
and P(c) the transition matrix, whose entries are given by the Pij(c) of 
Eq. (2). Under certain additional conditions on the probabilities Gg(c) and 
A~j(c) the algorithm converges as c J, 0 to a uniform distribution on the set 
of optimal configurations, i.e., ( 1 , 1 0 )  

lim lira Pr{X(k) = il c} = lim q,(c) 
c l O  k ~ c o  c ,~O 

==~ (5) 

and 

~zi = {[o~Opt[ -1 if i ~ ,~opt 
elsewhere (6) 

where ~opt denotes the set of optimal configurations. 
Here, we apply the standard form of the simulated annealing 

algorithm, i.e., the perturbation probability Gg(c) is chosen independent of 
c and uniformly over the neighborhood of a given configuration i. The 
acceptance probability is chosen as 

Sexp(-ACo/c) if ACo>O A6(c)= 
if ACo. <~ O 

(7) 

where ACo.=C(j)-C(i ). For this choice the components of the 
equilibrium distribution take the form 

exp{ [Cmi n - -  C(i)]/c} (8) 
qi(c) = Zj~ ~ exp{ [Cmi n - -  C(j)]/c} 

2.2. The Cooling Schedule 

Commonly one resorts to an implementation of the simulated anneal- 
ing algorithm in which a sequence of Markov chains of finite length is 
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generated at decreasing values of the control parameter. Optimization is 
carried out by starting off at a start value of the control parameter Co and 
repeatedly generating a Markov chain for decreasing values of c until c 
approaches 0. This procedure is governed by the cooling schedule. The 
parameters determining the cooling schedule are (1) the start value co of 
the control parameter, (2) the decrement function f of the control 
parameter, (3) the length L of the individual Markov chains, and (4) the 
stop criterion to terminate the algorithm. 

Here we apply the cooling schedule proposed by Aarts and van 
Laarhoven. For an extensive treatment see Refs. 1 and 2. Here, we briefly 
summarize the salient features of this cooling schedule. 

Start value Co: Let r/ be the acceptance ratio (the ratio between the 
number of accepted transitions and the number of proposed transitions in 
a Markov chain). The value of co is calculated from the requirement that 
initially the acceptance ratio should be large (close to 1). The value of Co is 
obtained by generating a number of trials (say m0) and applying the 
following expression: 

( m2 ) -~  (9) 
Co = ~--C(+) lnm2~1o_(l_qo)ml 

where ml and m2 denote the numbers of perturbations obtained with 
~C o <<. 0 and AC o > 0, respectively (ml + m2-~ mo), ~--'C(+) the average value 
of those ACij values for which AC U > 0, and r/o the initial acceptance ratio. 

Stop criterion Z: The algorithm is terminated at a value of c for 
which extrapolation of the smoothed value of the average cost Cs(c) 
satisfies a lower bound. This can be expressed by the following criterion: 

acs(c)__ ~co) Z: c~c < ~s (10) 

where 8s is a small, positive, real number called the stop parameter and 
C(co) is the average value of the cost function at co. 

The decrement of the control parameter and the Markov-chain length 
are obtained from the requirement that the annealing process should stay 
in quasiequilibrium. (1) From this requirement the following expressions are 
obtained: 

Decrement function f: The next value of the control parameter is 
calculated from 

( l n ( l + 6 ) c )  -~ 
f ( c ) = c  1+ 3a(c) (11) 
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where ~(c) denotes the standard deviation of the values of the cost function 
of the configurations of the Markov chain at c and 6 is a small, positive, 
real number called the distance parameter. 

Marker-chain length L: All Markov chains are chosen equally long 
and the chain length is given by the following expression: 

L = max{l~i[: i ~ }  (12) 

Remark 1. It has been shown ~1) that execution of the simulated 
annealing algorithm using the cooling schedule described above requires a 
total number of steps of order L In hN[, which can be chosen polynomial in 
the size of the problem, thus resulting in a polynomial-time execution of 
the simulated annealing algorithm. 

Remark 2. As a consequence of the asymptotic convergence of the 
simulated annealing algorithm it is intuitively clear that the slower the 
"cooling" is carried out, the larger the probability is that the final con- 
figuration is (close to) an optimal configuration. Thus, the deviation of the 
final configuration from an optimal configuration can be made as small as 
desired by investing more computational effort. The literature has not 
elaborated on the probabilistic dependence of the aforementioned deviation 
on the parameters of the cooling schedule. In this paper we present 
semiempirical results on this subject. A more theoretical treatment is still 
considered an open research topic. 

3. A QUANTITATIVE ANALYSIS 

In this section we discuss some quantitative aspects of the simulated 
annealing algorithm. The discussion is of a semiempirical nature and is 
based on an extensive set of numerical data obtained by applying the 
algorithm to a specific instance of the traveling salesman problem 
(TSP)J 11) The description of the problem instance is given in Section 3.1 
(see also the Appendix). In Section 3.2 we analyze the typical behavior of 
the simulated annealing algorithm. The analysis is based on an analytical 
approach from which the expectation and the variance of the cost function 
are expressed as a function of the control parameter. Furthermore, a 
parametrization is given which models the observed behavior. In Sec- 
tion 3.3 a discussion is presented of the probabilistic dependence of the final 
results obtained by the simulated annealing algorithm as a function of the 
distance parameter, which determines the convergence speed of the 
simulated annealing algorithm (see Section 2). The discussion is based on 
an average-case performance analysis. 
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3.1. The Problem Instance 

All numerical data presented in this paper are obtained by applying 
the simulated annealing algorithm to an instance of the TSP with 100 
cities. This is a medium-size optimization problem and we consider it as a 
proper representative of a broad class of combinatorial optimization 
problems to which the analysis presented in Sections 3.2 and 3.3 can be 
successfully applied, for the following reasons: (1) there are many different 
values of the cost function, (2) there are many local minima, and (3) the 
cost function is reasonably smooth (no clustering). 

The problem under consideration is a symmetric instance of the TSP 
defined on a set of 100 large European cities. A full description of this 
problem instance is given in the Appendix. The minimum tour length in 
this problem instance is 21134 and was obtained in 59.5 CPU sec on a 
Cyber-205 in PASCAL. The minimum tour length is calculated using a 
TSP algorithm developed at the University of Amsterdam by Jonker and 
Volgenant.(7) The algorithm uses a branch and bound technique based on a 
one-tree relaxation, applying a mechanism that eliminates nonoptimal 
edges of the TSP instance. The algorithm is implemented in PASCAL. 

Implementation of the simulated annealing algorithm was done in 
PASCAL on a VAX-11/780. As mentioned before, we used the cooling 
schedule given in Section2.2 with the following parameters (unless 
explicitly mentioned otherwise): t/o=0.9, e ,=  10 -5, and 6 =0.1. For the 
perturbation mechanism we used 2-opt moves as defined by Lin and 
Kernighan (12) and for the acceptance probability we used the standard 
form given by Eq. (7). 

3.2. Analysis of the Cost Function 

To model the typical behavior of the simulated annealing algorithm, 
we discuss an analytical approach to calculate the expectation {C}c and 
the variance a 2 of the cost function. Let X denote the outcome of a given 

2 trial; then {C}c and ac can be defined as 

( C ) c =  ~ Pr{X=i[c} C(i) (13) 
i E N '  

a~= ~ Pr{X=iJc}[C(i)- ( C ) c ]  2 (14) 
i ~  

In equilibrium we obtain [using Eqs. (3) and (8)] 

(c)c= ~ q,(c)c(i) 
i c ,~ '  

= ~2t~ exp{ [Cmj, -- C(i)]/c} C(i) (15) 
~ y ~  exp{ [Cmin - C(j)]/c} 
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2__ a c - ~ q,(e)[C(i)- (C)c]  2 
i ~  

~ , ~  exp{ [Cmi. - C(i)]/e}[C(i) - ( C ) c ]  2 
~]: ~ ~ exp { [ Cmi. -- C(j) ]/c } (16) 

Next, we introduce the configuration density co(C) defined as 

1 [ { i ~ l C < ~ C ( i ) < C + d C } l  (17) co(c )  dC  = 

Then, in the case of the simulated annealing algorithm employing the 
acceptance probability of Eq, (7), the equilibrium-configuration density 
~2(C, c) at a given value of c is given by 

co(C) exp[(Cmi n - C)/e] dC 
~2( C, 

c)dC= ~_o~ co(C') exp[(C~in-  C')/c] dC' 
(18) 

Clearly, ~(C, c) is the equivalent of the stationary distribution q(e) given 
by Eq. (8). As indicated by the notion "equilibrium," ~2(C,c) is the 
configuration density in equilibrium when applying the simulated annealing 
algorithm. Thus, one obtains 

(C)c  = C'g2(C', c) dC' (19) 
-- oz~ 

2 _ [ C ' -  ( C ) c ]  2 f2(C', c) dC' (20) O" c - -  
- - o o  

Given an analytical expression for the configuration density co(C), it is 
possible to evaluate the integrals of Eqs. (18)-(20). To estimate co(C) for a 
given combinatorial optimization problem is in most cases very hard. 
Indeed, co(C) may vary drastically for different specific problem instances, 
especially for C values close to Cmi.. Analysis of the configuration space by 
using the concept of ultrametricity can be of use for some problems. (9'17) 
However, in the present paper we intend to concentrate on the typical (i.e., 
average) behavior of the configuration density as observed for many 
problem instances. 

Figure 1 shows (a) the average cost C(c) and (b) the spreading a(c) of 
the cost as a function of the control parameter c obtained by applying the 
simulated annealing algorithm to the TSP instance described in Section 3.1. 
The numerical data are obtained from the following expressions: 

L 

C(c) = L - I  ~ C,(c) (21) 
i = 1  

? 1/2 

~(C)-~- L - 1  L [ C i ( c ) - - C ( c ) ]  2 )  ( 2 2 )  

i = 1  
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Fig. 1. (a) Normalized average c o s t  [ C ( c ) - ~ ' r n i n ] / [ C ( o o ) - C m i n ]  and (b) spreading 
a(c)/a(m) as a function of the control parameter c obtained for the 100-European-city TSP. 
The dashed lines are calculated according to Eqs. (38)-(41). 

where the average is taken over the values of the cost function C~(c) 
(i = 1 ..... L) of a Markov chain generated at a given value of the control 
parameter c. The typical behavior shown in Figs. la and lb is observed for 
many different problem instances and is reported by a number of 
authors. (~'6'8'1~ From the figures we can deduce some characteristic 

2 of the cost function. features of the expectation ( C ) c  and the variance a c 
First, it is observed that for large values of c the average and the spreading 
of the cost are about constant and equal to C(oo) and a(oo). This behavior 
is directly explained from Eqs. (15) and (16), or Eqs. (18)-(20), namely 

rmll ~e C(i) (23)  (C)o~ = c~o~lim (C)c=7--~, 

2 lim 2 i a~ = a c = ] - ~  ~ [ C ( i ) -  <C)oo] 2 (24) 
c - -~  o o  i e . ~  
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Second, we observe that there exists a threshold value c, of the control 
parameter for which 

< C>ct ~" l( < C> co "~ Cmin) (25 )  

and 
2_ 2 if c>~c, O" c --  O'co 

(26) 
2 2 if c<c, f i e<O 'co  

The threshold value c, marks the transition of the observed configurations 
from one region to another. We argue that these regions correspond to 
different (dominant) contributions of the configuration density co(C) to 
the observed configuration density s c). This leads to the following 
postulate. 

Postulate. Let R~ and R2 be two regions of the value of the cost 
function, where R1 denotes the region of a few standard deviations aco 
around <C>co and R 2 the region close to Cmjn. Then, for a typical com- 
binatorial optimization problem, co(C) is given by a normal distribution 
co,r in the region R~ and by an exponential distribution coe(C) in the 
region R2. Furthermore, we state that the number of configurations in RI 
is much larger than the number of configurations in R2. [] 

At the end of this section we discuss some arguments to support the 
type of distribution functions given in the postulate. From the. postulate 
and Eq. (18) it follows that for large values of c, s c) is dominated by 
cow(C), whereas for small values of c, co,(C) is dominant. 

Thus, writing cox(C) as 

co~(C) o c e x p ( ( C - < C > C O ) 2 )  - 2 - ~  (27) 

one obtains for large values of c 

exp( -  [ C -  ( (C>~  - a~/c)]Z/2a~)2 2 (28) 
I2(C'c)'~ {Cm"xexp(-[C ' ((C> 2 ~Cmin oo - -  {~oo/C)] /20"o0) g E t  

= N- ' ( c )exp  ( -  [C-(<C)~~162162 (29) 

where Cmax denotes the maximum value of the cost function and 

1 1/2{erf(Cm~-((C>co+a~/c)~ N(c) = ~ a~o(2n) ~-s / 

e r f  ( C m i n - -  (<C>co q- _ \ ~ - s  a~/c) )}  (30) 
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Consequently, since the expression given by Eq. (29) again corresponds to 
a normal distribution, one obtains 

< C > ~  < C > ~ - a ~ / c  (31) 

and 

2 ~  2 ( 3 2 )  O" c ~ O'oo 

The configuration density ~og(C) is given by an exponential distribution of 
the form 

c%(C) oc e x p [ ( C -  Cmin) ~] (33) 

for some constant ? (0 < 7 < c -  ~). Thus, for small values of c one obtains 

expE(Cmin - C ) ( 1  - ?c)/c] 
~ ( C ,  c )  ~,~ fCmax e x n r t c  . 

JCrain l - ' k \  m m  - -  C ' ) ( 1  - -  yc)/c] dC; 

=M(c)-l(~f-)exp[(C~i=-C)(~-f')l (34) 

where 

M(c)= l-exp [(Cmin-Cmax) ( ~ - ) ]  (35) 

Consequently, assuming that Cma x "> C m i n ,  w e  obtain 

C 
< C > r  - -  Cmi n oC - -  = c[1 + ?c + (yc) 2 + --.] (36) 

1 - ? c  

0",.2 oC = C2[1 +2~C-1-3(~/c)2+ .. .] (37) 

From these derivations it follows that (1) for large values of c, (C>~. is 
linear in c -~ and o F is constant, and (2) for small values of c, (C>c is 

2 to C 2. proportional to c, and o c 
Using the threshold value c, and the results obtained above, a simple 

parametrization is suggested of the form 

(C>c = 

C <  = C m i  n d r - N ,  (<C>oo - C m i n  - -  ) i f  c c, 
c , / \ 1  - ~ ,c /  

2 
floe 

C> = ( C > ~ - - -  if c>c, 
C 

(38) 
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and 

where 

l 
a < = N t a  ~ if c <~ ct 

2 (39) 
~r = 2 2 if c > c, 0"> =0"oo 

N, = (1 - 7c,)/c, (40) 

and 

c, = 2GL/ (  < C>o~ - Cm,~ (41) 

The latter equation is obtained from Eqs. (25) and (38). 
The curves corresponding to the parametrization of Eqs. (38)-(41) 

applied to the 100 European-city TSP instance of Section 3.1 are drawn in 
Figs. la and lb with 7 = 0.01 and ct= 4.9. The value of c, was obtained 
from Eq. (41) using a~ = 53 and (C)oo = 1353. The value of ~ was deter- 
mined experimentally. The curves fit the data very well (the correlation 
coefficient Z2=0.91). The parametrization formulas (38)-(41) have also 
been applied successfully to a number of other problem instances and we 
conclude that they represent very well the gross features of the expectation 
and the variance of the cost function obtained by the simulated annealing 
algorithm applied to these problem instances. 

R e m a r k  I. The normal distribution ~oy(C) is also reported by other 
authors. (6'18) It corresponds to a distribution that maximizes the entropy 
subject to the observed values of ( C ) ~  and ao~. More formally stated, 
~o~(C) is given by the solution of the following constrained optimization 
problem: 

f 
o o  

maximize my(C) In my(C) dC (42) 
- - o o  

f 
cx~ 

subject to my(C) dC = 1 (43) 
- - o o  

f ~  C 'o~x(C ' )  d C ' =  ( C ) ~  (44) 
- -  o o  

f 
o o  

2 (45) ( C ' -  ( C ) ~ )  20oy(C') d C ' =  ~ 
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Using standard techniques from the theory of constrained optimization, it 
is straightforward to show that cox(C ) is given by a normal distribution of 
the form given by Eq. (27). 

Evidently, the structure of a combinatorial optimization problem 
differs from one problem to another and the configurations in the region 
around ( C ) ~  are not by definition normally distributed. However, if the 
number of configurations is extremely large and the values of the cost 
function are distributed sufficiently uniformly (no clustering), then the 
number of degrees of freedom is large and the structure only plays a minor 
role. Consequently, the configuration density is approximately given by a 
normal distribution typical of disordered systems./3) 

Romork 2. In the region close to C~in the structure of a com- 
binatorial optimization problem is important and strongly determines the 
configuration density e~(C). Therefore, the exponential distribution c%(C) 
given in Eq. (33) should be treated with caution, since it does not hold by 
definition. It can be argued to hold for a number of examples. (6'~4) Further- 
more, it reproduces the behavior of the simulated annealing algorithm very 
well, as was shown above. However, more research into the analysis of 
combinatorial optimization problems is required to obtain insight into the 
behavior of the configuration density near Cr~in. With respect to this 
aspect, the work on configuration space analysis and ultrametricity may 
prove useful. (9'1v) 

3.3. Probabil ist ic Per formance Analysis 

In this section we present a semiempirical average-case analysis of the 
final result obtained by the simulated annealing algorithm as a function of 
the distance parameter 3, which governs the decrement of the control 
parameter of the cooling schedule (Section 2.2). Let Xf~n denote the out- 
come of the last trial of the simulated annealing algorithm. Then the expec- 
tation and spreading of the final deviation of the cost function are defined 
as 

(AC~,n)6= ~, Pr{Xn.=i[fi}[C(i)-Cmin] 
i r ~:,~ 

(46) 

and 

2 (Grin)&= ~ Pr{Xr~n=i[6}E(C(i)-Cmin)- (ACnn)6] 2 (47) 
ie~'  

Figure 2a shows the average deviation of the final value of the cost function 
from the minimum value as a function of the distance parameter 6 
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Fig. 2. (a) Normalized average deviation of the final cost ~-C~n and (b) spreading ~r~in as a 
function of the distance parameter 6 obtained for the 100-European-city TSP. The dashed 
lines are given by Eqs. (49) and (50). 

(Zl""~fin(3) = Grin(3 ) --Cmin, where Grin(3) denotes the average final value of 
the cost function obtained by the algorithm for a given value of 3). The 
corresponding spreading ann(3) is shown in Fig. 2b. The data are calculated 
from a set of final values of the cost function obtained by applying the 
simulated annealing algorithm (using the cooling schedule described in Sec- 
tion 2.2) n times with different initial configurations to the 100 European- 
city TSP instance described in Section 3.1. The values of n ranged from 10 
for small values of 3 to 20 for large values of 3. As mentioned in Remark 2 
of Section 2.2, it is intuitively clear that the slower the cooling process is 
carried out (small values of 3), the larger is the probability that the final 
result is close to an optimum. Indeed, this behavior is observed in Figs. 2a 
and 2b, i.e., 

m 

lira ACn,(6) = 0 and lira ann(6 ) = 0 (48) 
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From the behavior observed in Figs. 2a and 2b the following 
parametrizations for the expectation and the variance of ACt, n(6) can be 
deduced: 

(ACr, n)~ = [c~(6)]" (49) 

(~. .)~ = [~(~)]~  (50) 

where c~ = b ln(1 + 6). The values of the parameters a and b depend on the 
problem instance and are experimentally determined to be a = 0.42 and 
b =  1.54 ()~2 = 0.91). 

Figure 3 shows the average running time Tcpu required by the 
simulated annealing algorithm to obtain a final result deviating (on the 
average) ACr, n from the optimum cost. The expectation of the running time 
is parametrized as 

( T c p t J )  = to \ AC~.J 

where (TcPu)  denotes the expectation of the running time. The 
parameters t o and t are experimentally determined to be to=  
4.91 x 10 -3 sec on a VAX-11/780 and t = 2 . 4 4 7  (Z2 = 0.877). 

r~ 

^4/~ 

1 o a 

10 2 

I [ I I 

~t 

" l O  0 I I I I I 

0 1 2 3 4 5 
~-'Cfin (%) 

Fig. 3. Average running time Tcpu as a function of the average deviation of the final cost 
3-Cti n obtained for the 100-European-city TSP. The dashed line is given by Eq. (51). 
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The typical behavior of the average and the variance of the final value 
of the cost function obtained by the simulated annealing algorithm can be 
explained by assuming that the values of A Cnn are distributed according to 
a gamma distribution of the form 

1 -~c~n (52) c~(~ c~.) = ~ (~ c~o) ~-1 e 

where p =  [~(~)]a. In fact, the gamma distribution is the only relatively 
simple distribution function having a mean and a variance corresponding 
to (49) and (50). From Eq. (52) an expression is derived for the probability 
Q of finding a solution whose cost deviates less than a small positive 
amount e from the minimal cost, i.e., 

t Q=Pr{AC~.~<~}= Gp(C')dC' 

= e ( p ,  5) (53) 
where P(p, ~) denotes the incomplete gamma function. This function can be 
written as a series expansion in the following way: 

P(P' e) = F(p)  ~ (p + n) n! (54) 
n = O  

The probability Q can be straightforwardly evaluated from this expression, 
since the series expansion converges rapidly. Figure 4 shows results of 

i I"  I i i 
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Fig. 4. 

b=10-1 b = 
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Probability Q of obtaining a final result deviating less than a small amount  e from the 
min imum cost. The curves are calculated according to Eqs. (53) and (54). 
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numerical calculations of Q for different values of c~. The curves are 
calculated for the same set of parameters obtained from the 100-European- 
city TSP discussed above. From Fig. 4 it is possible to determine a value of 
the distance parameter 6 to obtain a given expected final result with a given 
probability. Moreover, Eq. (51) gives an estimate of the expected running 
time. In practice this would be very useful, since it enables the user of the 
simulated annealing algorithm to control the expected performance of the 
algorithm. However, the parameters used in our approach depend on the 
problem instance under consideration and can only be obtained from an 
analysis as described above. Clearly, this limits the practical use of the 
approach to those problem instances for which the parameters are known. 
On the other hand, we speculate that the global behavior presented in this 
paper is representative for a large class of problem instances. We therefore 
conclude that the analysis might prove useful for deducing global estimates 
for the average-case performance of the algorithm when applied to this 
class of problem instances. 

More detailed estimates of the average-case performance of the 
simulated annealing algorithm can only be deduced from a rigorous perfor- 
mance analysis which takes into account the detailed structure of the 
optimization problem at hand. To our knowledge such a theoretical 
average-case performance analysis is not known in the literature 3 and is 
therefore considered as an open problem. 

4. C O N C L U S I O N S  

The typical behavior of the simulated annealing algorithm is discussed 
by analyzing the expectation and the variance of the cost function as a 
function of the control parameter for a given instance of the traveling 
salesman problem. The observed behavior can be modeled by assuming 
that the con_figuration density contains two components, each component 
being dominant in a different region of the control parameter. In the region 
of a few standard deviations around the average cost (over all con- 
figurations) the configuration density is approximated by a normal dis- 
tribution. This component dominates the observed configuration density at 
large values of the control parameter. In the region close to the optimum 
cost the configuration density is approximated by an exponential dis- 
tribution. This component becomes dominant at small values of the control 
parameter. The expectation and variance of the cost function can be 
effectively parametrized by simple functions. 

The average-case performance of the simulated annealing algorithm 

3A theoretical upper bound on the quality of the final solution is only known for the 
maximum matching problem. 116) 
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for the problem instance at hand is investigated by analyzing the expec- 
tation and the variance of the final cost obtained by the algorithm as a 
function of the distance parameter that governs the decrement of the 
cooling control parameter. It is concluded that the average-case perfor- 
mance of the simulated annealing algorithm can be explained by assuming 
that the deviation of the final cost from the optimum cost is distributed 
according to a gamma distribution. 

For computational reasons it has not been possible to check whether 
the obtained results allow one to predict accurately the expected perfor- 
mance of the algorithm for larger instances than the one studied in this 
paper (the experiments described here took a few hundred hours of CPU 
time on a VAX-780). However, since the performance of the simulated 
annealing algorithm is reported by many to be more or less independent of 
the problem to which it is applied (see Ref. 10), we are confident that our 
results can be used for a wide class of problems represented by the problem 
instance used in the analysis. 

APPENDIX  

The 100 European-city TSP is a symmetric instance of the traveling 
salesman problem defined on the following set of cities: 

1 Amsterdam 26 Dortmund 51 London 76 Roma 
2 Antwerpen 27 Dresden 52 Luxembourg 77 Rostock 
3 Athinai 28 Dublin 53 Lyon 78 Rotterdam 
4 Barcelona 29 Diisseldorf 54 Madrid 79 Sarajevo 
5 Basel 30 Edinburgh 55 Magdeburg 80 Sevilla 
6 Belfast 31 Gdansk 56 Malaga 81 Sheffield 
7 Beograd 32 Genova 57 Malm6 82 Skopje 
8 Bergen 33 Glasgow 58 Manchester 83 Smolensk 
9 Berlin 34 G6teborg 59 Marseille 84 Sofija 

10 Bern 35 Granada 60 Milano 85 Southampton 
11 Bilbao 36 Graz 61 Minsk 86 Split 
12 Birmingham 37 Hamburg 62 Monaco 87 Stockholm 
13 Bonn 38 Hannover 63 Moskva 88 Strasbourg 
14 Bordeaux 39 Helsinki 64 Miinchen 89 Stuttgart 
15 Bratislava 40 Istanbul 65 Napoli 90 Thessaloniki 
16 Bremen 41 K61n 66 Nice 91 Torino 
17 Brno 42 Kr 67 Odessa 92 Toulouse 
18 Bruxelles 43 Krakow 68 Oslo 93 Trieste 
19 Bucuresti 44 Leeds 69 Palermo 94 Turku 
20 Budapest 45 Leipzig 70 Paris 95 Uppsala 
21 Burgas 46 Leningrad 71 Plovdiv 96 Valencia 
22 Constanta 47 Li6ge 72 Plzen 97 Warszawa 
23 Cork 48 Lisboa 73 P6rto 98 Wien 
24 Craiova 49 Liverpool 74 Praha 99 Zagreb 
25 Den Haag 50 L6dz 75 Riga 100 Ziirich 
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Fig. 5. The 100-European-city traveling salesman problem. The solid lines indicate an 
optimal tour. 

A l is t ing of  the d i s t ance  m a t r i x  tha t  goes wi th  the p r o b l e m  ins tance  is 

ava i l ab le  f rom the au thors .  F i g u r e  5 shows the  l oca t i on  of the 100 cities 
toge ther  wi th  a m i n i m a l  t ou r  whose  l eng th  equa l s  21,134 (km).  
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